Contribution from the Departments of Chemistry and Physics, Polytechnic Institute of Brooklyn, Brooklyn, New York 11201

The Crystal Structures of Synthetic Spodiosites. Ca_2VO_4Cl and $Ca_2AsO_4Cl^1$

BY E. BANKS, M. GREENBLATT, AND B. POST

Received October 2, 1969

The crystal structures of Ca₂VO₄Cl and Ca₂AsO₄Cl isomorphous with the spodiosite analogs Ca₂PO₄Cl and Ca₂CrO₄Cl have been determined. Both compounds crystallize in the orthorhombic system space group D_{2h}^{11} -Pbcm, with four molecules per unit cell. The cell constants are as follows: for Ca₂VO₄Cl, a = 6.311 (5), b = 7.140 (5), c = 11.052 (5) Å; for Ca₂AsO₄Cl, a = 6.318 (2), b = 7.108 (2), c = 11.058 (3) Å. Refinement of the atomic coordinates was carried out by full-matrix least-squares procedures (final *R* is 0.021 for Ca₂VO₄Cl and 0.023 for Ca₂AsO₄Cl). The structures are made up of discrete XO₄³⁻ tetrahedra held together by calcium ions. The XO₄³⁻ tetrahedra are significantly distorted from ideal tetrahedral symmetry in all four crystals.

Introduction

The syntheses and crystal structure determination of Ca2PO4C1 and Ca2CrO4C1 have been reported pre-These compounds are isomorphous with viously.2 the mineral spodiosite, Ca2PO4F.³ Recently, two new analogs of spodiosite, Ca₂VO₄Cl and Ca₂AsO₄Cl, have The determination of the crystal been prepared.4 structures of Ca₂PO₄Cl and Ca₂CrO₄Cl showed that both the PO₄³⁻ and CrO₄³⁻ tetrahedra are significantly distorted from the ideal symmetry and that the distortion of the chromate tetrahedron is significantly greater than that of the phosphate. This effect was attributed to electronic ordering in the CrO43-, in which the single d electron occupies the d_{z^2} orbital in a fashion analogous to the Jahn-Teller effect.⁵ In VO₄³⁻ there are no electrons in the d orbitals (ground state), and $A_{sO_4}^{3-}$ also has a closed-shell electronic configuration. The absence of unpaired electrons should exclude the possibility of electronic ordering of the type apparently present in the chromate, and any additional distortion in Ca₂VO₄Cl and Ca₂AsO₄Cl as compared to the phosphate tetrahedron would presumably be due to size effects.

The analysis of the crystal structures of Ca_2VO_4Cl and Ca_2AsO_4Cl was undertaken to make possible detailed comparisons of the XO_4^{3-} ions in the spodiosite series.

Experimental Section

Preparation.—Single crystals of Ca₂VO₄Cl and Ca₂AsO₄Cl were grown from a melt containing excess CaCl₂. The starting materials were thoroughly mixed, fired overnight in platinum crucibles at 900° in air, and cooled at 14° /hr to $300-400^{\circ}$. Well-formed, colorless, needlelike crystals of Ca₂VO₄Cl and Ca₂AsO₄Cl were obtained. This stoichiometry is based on data reported previously.⁴

Crystal Data.—Single-crystal photographic studies with preces-

sion and Weissenberg cameras confirmed that these compounds are isostructural with Ca_2PO_4Cl and Ca_2CrO_4Cl . Crystal data for the four spodiosite phases are given in Table I.

The lattice constants of Ca_2AsO_4Cl were determined by leastsquares refinement of the setting angles of 12 reflections measured on a Picker full-circle automatic diffractometer with manual control; each reflection was carefully centered. The lattice constants of Ca_2VO_4Cl were computed from higher order powder reflections obtained using a Norelco diffractometer.

Collection and Treatment of X-Ray Intensity Data. Ca₂VO₄Cl. —A single crystal of Ca₂VO₄Cl was ground to spherical shape (radius 0.018 ± 0.001 cm). Complete three-dimensional X-ray intensity data were collected on a PAILRED automatic single-crystal diffractometer, using graphite-monochromatized Mo K α radiation. The integrated intensity was measured by an ω scan of 1°/min over a 3.2° range, and background was counted for 24 sec on each side of the peak.

The intensities of 912 reflections in the levels h0l to h9l were measured. Integrated intensities were calculated from the function

$$I_{\text{net}} = I_{\text{measd}} - \frac{(B_1 + B_2)}{2} \left(\frac{T}{t_B}\right)$$

where I_{measd} is the total count, B_1 and B_2 are the background counts, T is the total time spent scanning the reflection, and t_B is the time spent for each background count. Of the 912 reflections, 799 were accepted as statistically above background (*i.e.*, I_{net} was positive). The data were corrected for Lorentz and polarization factors in the usual way. In the case of the vanadate where the incident beam was monochromatized (monochromator angle 3.078°), the corrections for Lorentz and polarization effects are those given by Ladell.⁶ A spherical crystal absorption correction was applied using the linear absorption coefficient $\mu_{M_0 K\alpha} =$ 44.8 cm⁻¹ and $\mu R = 0.80$; the transmission factor range was $3.15-2.55.^7$

A standard reflection checked each day for intensity drift did not change more than 1–2% during the entire data collection period.

Ca₂AsO₄Cl.—A single crystal of Ca₂AsO₄Cl was ground into a small spherical shape of radius 0.016 \pm 0.001 cm. Threedimensional X-ray data were collected on a Picker full-circle automatic diffractometer using zirconium-filtered Mo K α radiation.

The intensities of 1390 independent reflections were recorded in one octant using the θ -2 θ scan technique. All independent reflections to $2\theta = 80^{\circ}$ were measured. The peaks were scanned at 1° 2θ /min for 100 sec, and backgrounds were estimated by

⁽¹⁾ Work supported by Army Research Office (Durham) Contract No. DA-31-124-ARO(D)-71 and National Institutes of Health Grant No. DE 02577.

⁽²⁾ M. Greenblatt, E. Banks, and B. Post, Acta Crystallogr., 23, 166 (1967).
(3) H. Berman, C. Frondel, and C. Palache, "Dana's System of Mineralogy," Vol. II, Wiley, New York, N. Y., 1951, p 848.

⁽⁴⁾ E. Banks, M. Greenblatt, and R. W. Schwartz, *Inorg. Chem.*, 7, 1230 (1968).

⁽⁵⁾ E. Banks, M. Greenblatt, and B. R. McGarvey, J. Chem. Phys., 47, 3772 (1967).

⁽⁶⁾ J. Ladell, Trans. Amer. Crystallogr. Ass., 1, 110 (1965).

^{(7) &}quot;International Tables for X-Ray Crystallography," Vol. II, Kynoch Press, Birmingham, England, 1962, p 302.

		1110-10 1		
		CRYSTAL DATA		
	Ca ₂ PO ₄ Cl	Ca_2VO_4C1	Ca2CrO4Cl	Ca ₂ AsO ₄ C1
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Pbem	Pbcm	Pbem	Pbcm
<i>a</i> , Å	6.185 ± 0.002	6.311 ± 0.005	6.259 ± 0.005	6.318 ± 0.002
b, Å	6.983 ± 0.002	7.140 ± 0.005	7.124 ± 0.005	7.108 ± 0.002
<i>c</i> , Å	10.816 ± 0.004	11.052 ± 0.005	10.99 ± 0.005	11.058 ± 0.003
Density (measd), g cm ⁻³	2.995	3.06	3.14	3.42
Density (X-ray), g cm ⁻³	2,993	3.07	3.14	3.41
No. of molecules per unit cell	4	4	4	4
Color	Colorless	Colorless	Dark green	Colorless
Habit	Needles	Needles	Needles	Needles
	elongated	elongated	elongated	elongated
	along c	along c	along b	along c

TABLE I

Table II

Atomic Positional Parameters in Ca₂VO₄Cl^a

		x	У	2
Ca(1)	4(c)	0,6218(1)	1/4	0
Ca(2)	4(d)	0.1395(1)	0.4717(1)	1/4
C1	4(d)	0.4886(1)	0.1944(1)	1/4
V	4(c)	0.1266(1)	1/4	0
O(1)	8(e)	0.0345(2)	0.7308(2)	0.3762(1)
O(2)	8(e)	0.7103(2)	0.5652(2)	0.5285(1)

maining 1147 observed reflections were used for the final refine ment.

Refinement of the Structure. Ca₂VO₄Cl.—The structure was refined by least-squares procedures using our version of the Busing, Martin, and Levy⁸ program. The atomic parameters determined for Ca₂CrO₄Cl were used as a starting point.² After three cycles of refinement in which anisotropic temperature factors were used and in which the scattering factors of Ca, V, and Cl were corrected for dispersion effects,⁹ $R (= \Sigma ||F_o| - s|F_c||/\Sigma|F_a|)$, the discrepancy factor, dropped to slightly above 8%.

TABLE III^a Atomic Thermal Parameters in Ca₂VO₄Cl^b

A. Anisotropic Thermal Factors						
	\$ 11	\$ 22	β_{33}	β_{12}	β_{13}	β_{28}
Ca(1)	0.0028(1)	0.0030(1)	0.00204(3)	0	0	0.00052(3)
Ca(2)	0.0059(1)	0.0033(1)	0.00116(3)	-0.0004(1)	0	0
C1	0.0079(1)	0.0090(1)	0.00175(4)	0.0038(1)	0	0
V	0.0022(1)	0.0023(1)	0.00076(3)	0	0	-0.00011(2)
O(1)	0.0046(3)	0.0053(2)	0.0012(1)	0.0011(2)	0.0005(1)	0
O(2)	0.0047(2)	0.0031(2)	0.0024(1)	-0.0006(1)	0	0.0003(1)

B. Rms Displacement along Principal Axes of Thermal Ellipsoids (Å)

	1	2	3
Ca(1)	0.075(2)	0.083(1)	0.116(1)
Ca(2)	0.085(1)	0.091(1)	0.110(1)
Cl	0.101(1)	0.104(1)	0.171(1)
V	0.067(1)	0.068(1)	0.078(1)
O(1)	0.076(3)	0.097(3)	0.122(2)
O(2)	0.083(3)	0.101(2)	0.123(2)

^a Estimated standard deviations (in parentheses) in this and following tables occur in the last significant digit in each case. ^b The form of the anisotropic temperature expression is $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)]$.

counting for 10 sec at 0.8° from peak maxima. A standard reflection was measured after every 20 reflections, to check on stability of operation. Total variation in the standard intensity was less than 5% during the data collection. Deviations were erratic (*i.e.*, intensity of standard reflection fluctuated between a minimum and maximum value, probably due to instability of X-ray intensity or slight movement of the pulse-height analyzer's window or a combination of both and other operational factors). These variations were corrected by scaling the intensities as follows. We assumed a linear correction between monitored standards, and then these were scaled to the maximum standard. The total discrepancy was less than 5% between the maximum and minimum values of the intensity of standard reflection, and the average was much less.

Data reduction was carried out as described above for Ca₂-VO₄Cl. For the absorption correction the linear absorption coefficient $\mu_{Mo} \kappa \alpha = 96$ and $\mu R = 1.57$ were used. The transmission factor range was 8.51-4.31.

Of the 1390 recorded reflections, 30 were found to equal zero after data refinement, and 213 additional reflections were removed as these were too weak to be statistically reliable. The re-

It was observed in an independent experiment that crystals from this batch exhibited large extinction and multiple diffraction effects.¹⁰ Furthermore, we noticed that F_o was systematically larger than F_o for all strong reflections, indicating large extinction effects. The structure was then refined further by applying extinction corrections to minimize the effects of both extinction and multiple diffraction in the form first suggested by Zachariasen and incorporated by Coppens and Hamilton into their leastsquares program at the Brookhaven National Laboratories.¹¹

After two more cycles of refinement using isotropic extinction corrections and a weighting scheme, $w = 1/[36 + 0.015F^2]$, the conventional R factor decreased to 0.021. The weighted R_w $(= [\Sigma w(|F_o| - |F_e|)^2 / \Sigma w|F_o|^2]^{1/2})$ was 0.032. Plots of ΔF vs. F_o and vs. sin θ yield approximately a constant value using our

⁽⁸⁾ W. R. Busing, K. O. Martin, and H. A. Levy, "ORFLS, a Fortran Crystallographic Least-Squares Program," Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1962.

^{(9) &}quot;International Tables for X-Ray Crystallography," Vol. III, Kynoch Press, Birmingham, England, 1962, pp 215, 216.

⁽¹⁰⁾ B. Post, private communications.

⁽¹¹⁾ P. Coppens and W. C. Hamilton, Acta Crystallogr., A26, 71 (1970).

	K L FORM Color 21 11 16 4 9 2 4 9 2 4 0 2 2 2 7 13 9 3 4 0 2 2 4 0 2 102 102 102 102 3 3 13 H = 6 8 2 7 7 6 9 3 3 13 13 13 13 13 13 13 13 14 12 10 6 6 6 6 6 11 11 11 12 13 13 13
) 4 30 30 513 5 5 2 0 109 108 7 9 9 3 9 12 12 14 4 3 7 10 63 63 3 10 8 7 K 1 FORS FOLD 6 4 57 57 5 4 13 10 9 8 27 26 7 10 56 56 7 0 9 9) 6 8 10 6 0 14 16 2 1 44 43 7 10 63 63 3 10 8 7 K 1 FORS FOLD 6 4 57 57 2 4 13 10 9 8 27 26 7 10 56 56 7 0 9 9) 8 24 8 56 1 27 29 2 2 19 17 7 11 6 6 3 11 19 19 0 0 72 72 6 8 58 24 11 11 9 9 6 5 8 0 7 7 7 1 5	

TABLE IV

^a Scale factor is 10.54; $F_0 = F_0$ /scale factor.

TABLE V						
Atomic Positie	onal Par	AMETERS IN	Ca_2AsO_4Cl			
	x	У	z			

Ca(1)	4(c)	0.6252(1)	1/4	0
Ca(2)	4(d)	0.1384(1)	0.4764(1)	1/4
C1	4(d)	0.4958(1)	0.2007(1)	1/4
As	4(c)	0.12909(3)	1/4	0
O(1)	8(e)	0.0297(2)	0.7352(2)	0.3774(1)
O(2)	8 (e)	0.7100(2)	0.5669(2)	0.5272(1)

weighting scheme. The standard deviation of an observation of unit weight is 0.8439. The isotropic extinction parameter which multiplies F_0 is 1.320 (41) \times 10⁻⁴ cm⁻¹. The largest extinction correction is equal to 0.29 for (004) in Ca₂VO₄Cl. The atomic

parameters and their estimated standard deviations are listed in Tables II and III. Calculated and observed structure factors are listed in Table IV.

The refinement of the crystal structure of Ca₂AsO₄Cl proceeded in much the same way. Starting with the positional parameters of Ca₂VO₄Cl, three cycles of least-squares refinement yielded R = 0.071. Two more cycles of refinement with isotropic extinction corrections gave a discrepancy coefficient of 0.023. The weighted R_w value was 0.024, using the weighting scheme $w = 1/(\sigma_I^2 + 0.004F^2)$ where σ_I is the fractional standard deviation in the intensity of each reflection calculated by the function

$$\sigma_I = \left[\left| I_{\text{measd}} + \left(\frac{B_1 + B_2}{2} \right) \left(\frac{T}{t_{\text{B}}} \right) \right| \right]^{1/2} / \left| I_{\text{net}} \right|$$

TABLE VI	
Atomic Thermal Parameters in Ca2AsO4C	l

A. Anisotropic Thermal Factors

	A	Anisotropic Ther	mai Factors		
β_{11}	β_{22}	β_{33}	\$ 12	\$ 13	Ø23
0.0038(1)	0.0028(1)	0.00202(3)	0	0	0,00036(3)
0.0060(1)	0.0031(1)	0.00143(3)	-0.0005(1)	0	0
0.0082(1)	0.0081(1)	0.00185(3)	0.0035(1)	0	0
0.00308(4)	0.00232(3)	0.00108(2)	0	0	-0.0009(2)
0.0061(2)	0.0049(2)	0.0013(1)	0.0009(2)	0.0007(1)	0.0002(1)
0.0051(2)	0.0027(2)	0.0027(1)	-0.0011(2)	0	0.0003(1)
B.	Rms Displaceme	ent along Principal .	Axes of Thermal Elli	psoids (Å)	
	1		2		3
Ca(1)	0.083(1)	0.088(1)		0.114(1)
Ca(2)	0.088(1)	0.094(1)		0.111(1)
Cl	0.102(1)	0.107(1)		0.164(1)
As	0.0761(6)	0.0789(5)		0.0825(6)
O(1)	0.084(3)	0.103(2)		0.123(2)
O(2)	0.074(3)	0.108(2)		0.129(2)
	$\begin{array}{c} \beta_{11} \\ 0.0038 (1) \\ 0.0060 (1) \\ 0.0082 (1) \\ 0.00308 (4) \\ 0.0061 (2) \\ 0.0051 (2) \end{array} \\ B. \\ \begin{array}{c} Ca(1) \\ Ca(2) \\ C1 \\ As \\ O(1) \\ O(2) \end{array} \\ \end{array}$	$\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$	β_{11} β_{92} β_{88} $0.0038 (1)$ $0.0028 (1)$ $0.00202 (3)$ $0.0060 (1)$ $0.0031 (1)$ $0.00202 (3)$ $0.0082 (1)$ $0.0031 (1)$ $0.00143 (3)$ $0.0082 (1)$ $0.0081 (1)$ $0.00185 (3)$ $0.00308 (4)$ $0.00232 (3)$ $0.00108 (2)$ $0.0061 (2)$ $0.0049 (2)$ $0.0013 (1)$ $0.0051 (2)$ $0.0027 (2)$ $0.0027 (1)$ ICa(1)0.0083 (1)Ca(1)0.0088 (1)C10.0088 (1)C10.00761 (6)O(1) $0.084 (3)$ $0(2)$ O(2) $0.074 (3)$	A. Anisotropic Thermal Factors β_{11} β_{22} β_{33} β_{12} $0.0038(1)$ $0.0028(1)$ $0.00202(3)$ 0 $0.0060(1)$ $0.0031(1)$ $0.00143(3)$ $-0.0005(1)$ $0.0082(1)$ $0.0031(1)$ $0.00185(3)$ $0.0035(1)$ $0.00308(4)$ $0.00232(3)$ $0.00108(2)$ 0 $0.0061(2)$ $0.0049(2)$ $0.0013(1)$ $0.0009(2)$ $0.0051(2)$ $0.0027(2)$ $0.0027(1)$ $-0.0011(2)$ B. Rms Displacement along Principal Axes of Thermal Ellip12Ca(1) $0.088(1)$ $0.0088(1)$ $0.0984(1)$ $0.0984(1)$ $0.0761(6)$ $0.0761(6)$ $0.0789(5)$ $0(1)$ $0.074(3)$ $0.0084(2)$	β_{11} β_{21} β_{38} β_{12} β_{13} 0.0038 (1) 0.0028 (1) 0.00202 (3) 0 0 0.0060 (1) 0.0031 (1) 0.00143 (3) $-0.0005 (1)$ 0 0.0082 (1) 0.0081 (1) 0.00185 (3) 0.0035 (1) 0 0.00308 (4) 0.00232 (3) 0.00108 (2) 0 0 0.0060 (12) 0.0049 (2) 0.0013 (1) 0.0009 (2) 0.0007 (1) 0.0051 (2) 0.0027 (2) 0.0027 (1) $-0.0011 (2)$ 0 B. Rms Displacement along Principal Axes of Thermal Ellipsoids (Å) 1 2 Ca(1) 0.088 (1) 0.088 (1) 0.094 (1) Ca(2) 0.088 (1) 0.094 (1) Ca(1) 0.102 (1) 0.107 (1) Ass 0.0761 (6) 0.0789 (5) O(1) 0.084 (3) 0.103 (2) 0(2)

IAI	SLE '	V	ш	

CALCULATED AND OBSERVED STRUCTURE FACTORS FOR Ca2AsO4Cla

517625463551393146676610067115117891551751605061297111174804040404585755959914607141444451441398812119466174112129044141111111111
1 2 4 5 6 8 9 10 12 10 1 2 3 4 5 6 8 9 10 11 2 10 1 2 3 4 5 6 8 9 10 11 2 1 3 4 5 7 8 9 10 11 0 1 2 4 8 10 0 0 10 1 1 7 4 8 10 0 0 10 1 1 7 4 6 8 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1
5 1762 5 6 4 3 5 5 1 39 3 1 4 6 6 7 4 4 1 1 7 7 8 20 3 7 6 7 0 4 1 1 7 7 1 5 1 6 6 7 7 7 7 8 8 0 1 0 7 7 7 1 1 5 1 7 7 8 20 3 7 5 5 5 6 6 6 5 3 7 5 1 9 1 0 7 7 7 1 1 5 1 7 7 8 20 3 7 5 5 5 6 6 6 5 3 7 5 1 1 0 7 7 7 1 1 5 1 7 7 8 20 3 7 5 1 1 1 0 7 7 7 1 1 5 1 7 7 8 20 3 7 5 1 1 1 0 7 7 7 1 1 1 1 7 9 1 9 5 1 1 1 1 7 1 1 2 8 20 3 7 5 1 1 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1
51 7 7 2 2 5
$ \begin{array}{c} 51 \\ 51 \\ 52 \\ 51 \\ 51 \\ 52 \\ 51 $
$ \begin{array}{c} 8 \\ 8 \\ 8 \\ 211 \\ 17 \\ 17 \\ 12 \\ 13 \\ 13 \\ 12 \\ 22 \\ 10 \\ 11 \\ 11 \\ 12 \\ 12 \\ 12$
$ \begin{array}{c} 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 $
$ \begin{array}{c} \mathbf{s} \\ \mathbf$
8 9 9 1
$ \begin{array}{c} \mathbf{s} \\ \mathbf$

^a Scale factor is 3.350; $F_o = F_0$ /scale factor.

The standard deviation of an observation of unit weight is 0.6668. The isotropic extinction parameter applied to F_c is 0.733 (16) \times 10⁻⁴ cm⁻¹. The largest extinction correction is 0.35 for (004) in Ca₂AsO₄Cl. The atomic parameters are listed in Tables V and VI. Calculated and observed structure factors are listed in Table VII.

Results

The spodiosite structure projected along the *a* axis is shown in Figure 1. Interatomic distances and interbond angles for Ca_2PO_4Cl , Ca_2VO_4Cl , Ca_2CrO_4Cl , and Ca_2AsO_4Cl are listed in Table VIII. The standard deviations reported were derived from the complete variance–covariance matrices using the function and error program of Busing, *et al.*¹² The dimensions of

the vanadate and arsenate tetrahedra are illustrated in Figure 2, produced by Johnson's thermal ellipsoid plot program.¹³

Discussion

The spodiosite structure is made up of discrete XO_4^{3-} tetrahedra, arranged along the *c* axis one above the other; members of each pair are related by a mirror plane at $z = \frac{1}{4}$. They are apparently held together by the positively charged calcium ions. The coordination around both calcium ions is eight, with six nearest oxygens and two chlorines, in an irregular polyhedron. The chlorines appear to fill available holes in the structures. Evidently the spodiosite structure requires the

⁽¹²⁾ W. R. Busing, K. O. Martin, and H. A. Levy, "ORFFE, a Fortran Crystallographic Function and Error Program," Report ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1964.

⁽¹³⁾ C. K. Johnson, "ORTEP, a Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations," Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1965.

Figure 1.—The unit cell contents of Ca₂XO₄Cl projected along a (X = P, V, Cr, As): large open circles, Cl; atoms shaded up and down, X; double circles, Ca; smaller open circles, O. Bonds between the atoms in XO₄³⁻ tetrahedra are represented by broken lines.

IABLE VIII							
INTERATOMIC DISTANCES AND BOND ANGLES"							
	Ca_2PO_4C1	Ca_2VO_4Cl	Ca2CrO4C1	Ca2AsO4Cl			
	D	vistances, Å					
Ca(1)-O(1)	2.532(2)	2.568(1)	2.515(3)	2.570(1)			
Ca(1)-O(2)	2.491(2)	2.496(1)	2.464(3)	2.504(1)			
Ca(2)-O(1)	2.424(2)	2.409(1)	2.425(3)	2.416(1)			
Ca(2)-O(2)	2.655(2)	2.638(1)	2.593(3)	2.661(1)			
Cl-Cl	3.4990(1)	3.5729(1)	3.5707(2)	3.5545(0)			
ClO(1)	3.263(2)	3.327(1)	3.331(3)	3.322(1)			
ClO(2)	3.191(2)	3.243(1)	3.227(3)	3.239(1)			
X-O(1)	1.547(2)	1.711(1)	1.710(3)	1.690(1)			
X-O(2)	1.534(2)	1.703(1)	1.689(3)	1.679(1)			
O(1)-O(2')	2.481(2)	2.724(2)	2.694(4)	2.678(2)			
O(1')-O(2')	2.578(2)	2.902(2)	2.931(4)	2.873(2)			
O(2)-O(2')	2.477(3)	2.713(2)	2.670(5)	2.672(2)			
O(1)-O(1')	2.495(3)	2.751(2)	2.719(5)	2.720(2)			
		Angles, deg					
O(1)-X-O(2')	107.3(1)	105.9(1)	104.8(1)	105.3(1)			
O(1')-X-O(2)	107.3(1)	105.9(1)	104.8(1)	105.3(1)			
O(2) - X - O(2')	107.7(1)	105.6(1)	104.4(2)	105.5(1)			
O(1) - X - O(1')	105.7(1)	107.0(1)	105.3(2)	107.2(1)			
O(1)-X-O(2)	113.6(1)	116.4(1)	119.2(1)	117.1(1)			
O(1')-X-O(2')	113.6(1)	116.4(1)	119.2(1)	117.1(1)			

m. ____ 17111

presence of a large anion such as Cl^- or Br^- in these positions. Except for the mineral Ca_2PO_4F which gives its name to this structure, there are no spodiosites with these ions absent, and, significantly, no phase of this composition exists in the $Ca_3(PO_4)_2$ - CaF_2 system.

Comparison of tetrahedral radii for V^{5+} and As^{5+} in these compounds with those listed by Shannon and Prewitt¹⁴ shows a discrepancy of about 0.05 Å. We

Figure 2.—Dimensions of vanadate and arsenate tetrahedra.

believe that this contradicts the statement by Shannon and Prewitt that radii are independent of structure type. However, these authors point out that this independence must be modified by considerations of covalency and repulsive forces. It would appear that the effect of these differences between the structures reported here and those chosen by Shannon and Prewitt as standards is sufficient to modify the apparent radii to this extent, which is significantly greater than experimental error.

The tetrahedra are considerably distorted from ideal configuration for all four structures; the only element of symmetry left is a twofold axis. A significant aspect of this study is the relative distortion of XO_4^{3-} tetrahedra. It is now clear that the most significant angular distortions occur in CrO_4^{3-} . The electronic configuration of Cr(V) in CrO_4^{3-} is d¹. Results of the electron spin resonance measurements made in diluted single crystals of $Ca_2(PO_4,CrO_4)Cl$ showed that the unpaired electron is in a d_{z^2} orbital.⁶ We suggested that, in addition to the distortion due to crystal lattice effects

⁽¹⁴⁾ R. D. Shannon and C. T. Prewitt, Acta Crystallogr., Sect. B., 25, 925 (1969).

clearly present in the phosphate tetrahedron, a Jahn– Teller type of electronic ordering takes place in the case of CrO_4^{3-} tetrahedron, nearly doubling the extent of distortion.

In VO₄³⁻ there is no electron in the d orbitals (ground state). Bond distances in VO₄³⁻ are similar to those in CrO₄³⁻, but bond angles fall approximately between the values in the phosphate and chromate. The increased distortion in the vanadate tetrahedron as compared to PO₄³⁻ is tentatively attributed to the lowering of the interatomic force constants and vibration frequencies due to the increased mass. As the chromium-(V) and vanadium(V) ions are not expected to differ appreciably in size the larger distortion in the CrO₄³⁻ tetrahedron appears to be electronic in nature. However, the excess distortion in VO₄³⁻ may also be due to the mixing of low-lying excited states in the d manifold. This should be investigated spectroscopically.

Similarly, in AsO_4^{3-} , there are no unpaired electrons (ground state); the crystal structure shows the distortion to be intermediate between the VO_4^{3-} and CrO_4^{3-} . On the basis of size considerations alone we might have expected the distortion of the arsenate to be smaller than

that of the vanadate ion; although the differences between the distortions of the two tetrahedra are small, the arsenate is distorted to a significantly greater extent than the vanadate. The reasons are not clear.

Conclusion

Spodiosites with the general formula Ca_2XO_4Cl , with X = P, V, Cr, and As, have been prepared. Detailed crystal structure analyses of all four show that the XO_4^{3-} tetrahedra are considerably distorted from T_d symmetry. Interatomic distances are normal, and the distortions cannot be explained by considerations of crystal packing alone. The largest distortion is exhibited by the CrO_4^{3-} tetrahedron; this was attributed to electronic ordering of the lone electron in the d orbital. PO_4^{3-} , VO_4^{3-} , and AsO_4^{3-} do not contain unpaired electrons and the observed distortions are notably smaller than in CrO_4^{3-} .

Acknowledgment.—We wish to thank S. J. La Placa of the Chemistry Department of Brookhaven National Laboratories for his help in connection with the use of the computer programs at the Brookhaven National Laboratories.

CONTRIBUTION FROM THE BELL TELEPHONE LABORATORIES, INC., MURRAY HILL, NEW JERSEY 07974

The Crystal Structure of the 1:1 Molecular Addition Compound Xenon Difluoride–Iodine Pentafluoride, $XeF_2 \cdot IF_5$

By G. R. JONES, R. D. BURBANK, AND NEIL BARTLETT

Received September 11, 1969

The crystal structure of the 1:1 molecular addition compound xenon difluoride-iodine pentafluoride, $XeF_2 \cdot IF_5$, has been determined from three-dimensional X-ray data. The material crystallizes in the tetragonal system, with four molecules in a cell of dimensions a = 7.65 (1) and c = 10.94 (1) Å. A satisfactory refinement was obtained in the space group I4/m, with a final conventional R factor of 0.034 for 403 nonzero reflections. The structure has established the existence of discrete XeF₂ and IF₅ molecules, linear and square-based pyramidal, respectively. The alignment of the XeF₂ molecules, with each fluorine ligand directed toward the iodine atoms of neighboring IF₅ molecules, and the shortness of those interatomic distances (3.142 ($\sigma = 0.007$) Å) suggest that the ordered crystal lattice is largely a consequence of electrostatic attractions between the different components.

Introduction

Xenon difluoride is a fluoride ion $donor^{1-3}$ and forms salts with arsenic pentafluoride and strong fluoride ion acceptor metal pentafluorides. It also forms a 1:1 compound with iodine pentafluoride which Bartlett and Sladky⁴ concluded was a molecular adduct on the basis of Raman spectroscopic evidence. The crystal structure of the compound confirms this representation, the geometry of each molecule being only slightly different from that of the "free" species. The nature of the alignment of the molecules in the crystal lattice is consistent with coulombic attraction of negatively charged fluorine ligands of the XeF₂ molecules to the positively charged iodine atoms of nearest IF₅ molecules. This is similar to the 1:1 molecular adduct⁵ XeF₂ · XeF₄ and like the situations found^{6.7} in crystalline XeF₂ and XeF₄.

(5) J. H. Burns, R. D. Ellison, and H. A. Levy, Acta Crystallogr., 18, 11 (1965); J. Phys. Chem., 67, 1569 (1963); "Noble-Gas Compounds," H. H. Hyman, Ed., University of Chicago Press, Chicago, Ill., 1963, p 226.

F. O. Sladky, P. A. Bulliner, N. Bartlett, B. G. De Boer, and A. Zalkin, Chem. Commun., 1048 (1968); F. O. Sladky, P. A. Bulliner, and N. Bartlett, J. Chem. Soc. A, 2179 (1969).

⁽²⁾ V. M. McRae, R. D. Peacock, and D. R. Russell, Chem. Commun., 62 (1969).

⁽³⁾ J. G. Knowles and J. H. Holloway, J. Chem. Soc. A, 756 (1969).

⁽⁴⁾ N. Bartlett and F. O. Sladky, ibid., A, 2188 (1969).

⁽⁶⁾ H. A. Levy and P. A. Agron, "Noble-Gas Compounds," H. H. Hyman, Ed., University of Chicago Press, Chicago, Ill., 1963, p 221; J. Amer. Chem. Soc., 85, 241 (1963); P. A. Agron, G. M. Begun, H. A. Levy, A. A. Mason, C. G. Jones, and D. F. Smith, Science, 139, 842 (1963).

⁽⁷⁾ D. H. Templeton, A. Zalkin, J. D. Forrester, and S. M. Williamson, J. Amer. Chem. Soc., 85, 242 (1963); "Noble-Gas Compounds," H. H. Hyman, Ed., University of Chicago Press, Chicago, Ill., 1963, p 203; W. C. Hamilton and J. A. Ibers, *ibid.*, p 195; J. H. Burns, P. A. Agron, and H. A. Levy, *ibid.*, p 211; Science, 139, 1208 (1963); J. A. Ibers and W. C. Hamilton, *ibid.*, 139, 106 (1963).